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The interaction of soliton pulses in the optical-fiber nonlinear directional coupler is studied
theoretically and numerically. Using the Hamiltonian structure of the equations, a canonical pertur-
bation theory is developed and the steady-state regimes of the two-soliton system are found. Linear
stability analysis shows that, in general, none of these states are stable. Numerical simulations
performed support, both qualitatively and quantitatively, the theoretical predictions.
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I. INTRODUCTION

Optical solitons in fiber waveguides are considered as
the future bits of very high speed digital data commu-
nication systems. This is due to their unique property
[1] of propagation without dispersion or distortion, over
very long distances [2]. In order to exploit the high data
transmission rates of solitons in fibers, all optical-fiber
components, which will be able to control and manipulate
the soliton bits, must be found. One of the most promis-
ing candidates for the “optical switch” is the nonlinear
directional coupler (NLDC) [3,4]. The switching proper-
ties of this device have been studied experimentally [5,6]
and theoretically [7-10]. Soliton pulse switching was de-
scribed in the framework of a variational approach [11]
in [7] and in [8] (in [8] a more complete trial function was
employed). Switching of soliton pulses was investigated
numerically in [9]. In [10], a variant of the variational
method was applied to Gaussian shaped pulses. Another
potential application of the NLDC is to use it as a build-
ing block for all digital soliton bit processing. For this
purpose, one must investigate the behavior of solitons
interacting in the NLDC.

The evolution of envelope pulses in single-mode
optical-fibers can be described by the nonlinear
Schréodinger equation (NLSE) [12]. The NLSE is inte-
grable by the inverse scattering method [13] and stable
solitons are (some of) its solutions. Soliton interaction in
the NLDC is described by two coupled NLSE’s [see Egs.
(1), Sec. II]. Generally, coupled NLSE’s are not com-
pletely integrable [14]. In this situation, one can think
of two alternative directions of investigating pulse prop-
agation phenomena in the NLDC. In the first, one looks
for soliton states of the NLDC that do not exist as stable
solutions of the single NLSE. This approach is applica-
ble regardless of the strength of the coupling between
the fibers and is especially suitable when the coupling is
strong. In [15], it was found that there exist symmetric
and asymmetric stationary coupled soliton states of the
NLDC. Bifurcations from both solutions to functionally
different, asymmetric states were identified, analytically
for the symmetric state and numerically for the asymmet-
ric state [15]. A linear stability analysis of all these state
was carried out in [16,17], where it was shown that the
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symmetric state becomes unstable after the bifurcation
of the new asymmetric state, which by itself is stable. For
the asymmetric branch, it was found that it loses its sta-
bility before the bifurcation point and that the branching
asymmetric solution is also unstable [16,17]. The second
direction addresses the soliton pulses that exist in the sin-
gle NLSE and deals with their interaction in the NLDC.
This approach is especially relevant when the coupling
between the two adjoining fibers is weak, since it is then
natural to assume that it would act as a perturbation to
the single-fiber soliton states.

In this (second) case one would then want to study
the soliton states of the single NLSE that the NLDC can
support, and their stability, by means of perturbation
methods. In previous works using perturbation meth-
ods, initial soliton pulse profiles with a limited range of
parameter values were considered [7,18,19]. Also, only
limited types of perturbations to these profiles [7,18-21]
were investigated.

In this work we consider the general one-soliton pulse
that can persist in an unperturbed single-mode fiber and
look at the evolution of all its parameters during the in-
teraction, with a similar pulse in the adjoining fiber, in
the NLDC. We shall investigate the situation in which the
initial ¢onditions are in the form of one-soliton solutions
in both the fibers. We shall be interested in the evolution
of both these pulses under the influence of the neighbor-
ing pulse in the adjoining fiber. Using the Hamiltonian
structure of the equations for the evolution of pulses in
the NLDC, we shall be able to look at the evolution of
all the soliton parameters during their interaction in the
NLDC. By doing so, we can find the bound states of the
(initial) solitons in the fibers and investigate their sta-
bility. This would help us to look at the possibilities of
using the NLDC as a soliton processing logical element.

The paper is organized as follows. Section II presents
the equations for the evolution of envelope pulses in the
NLDC. In Sec. IIT the Hamiltonian formalism for the
coupled NLSE’s is outlined and the reduced equations
are canonically transformed (using the integrals of mo-
tion of the system) to new coordinates. Section IV deals
with the steady-state points of the reduced Hamiltonian
system. The linear stability of the steady-state points is
investigated in Sec. V. Numerical simulations that verify
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the analytical results are presented in Sec. VI. Section
VII summarizes our results. In the Appendix a detailed
derivation of the steady-state points is carried out.

II. COUPLED NLSE’S

The equations for the envelope of pulses, centered
around frequency wy, in two adjoining single-mode fibers
interacting in the NLDC are [9]

2

fj;h + aa;ﬁl + 291> 91 + agpy = 0, (1a)
2

6¢2+6¢2+2|¢2|2¢2+a¢1=0, (1b)

Oz at?

where we have written the equations in soliton [22] units.
z is the normalized (to the dispersion length) distance of
propagation along the fiber axis; ¢ is the normalized (to
the pulse duration) time, in a frame of reference mov-
ing with the group velocity; ¥; (¢ = 1,2) are the scaled
amplitudes. « is the (dimensionless) coupling coefficient
between the pulses in the fibers and is assumed to be
small. This can be achieved, even for soliton pulses for
which the dispersion length is large, due to the expo-
nential fall of a with the distance between the adjoining
fibers [23].

In writing the interaction of pulses in the NLDC in the
form of Egs. (1), we assume that the pulses in both fibers
have the same group velocity and the same dispersion co-
efficient. That is, they correspond to envelopes of pulses
centered around the same frequency wg. When this is
the case, a can be chosen to be real. The interaction
term arises from the overlapping of the evanescent field
of the transverse fiber mode with the field in the adjoin-
ing fiber core [23]. It is assumed that the transverse fiber
mode is not affected by the proximity of the adjoining
fiber and by the existence of an identical transverse mode
in it. We also assume that the interaction term arising
from the cross phase modulation (terms proportional to
|'t/)1[2 ¥3—i,t = 1,2) can be neglected.

The unperturbed (a = 0) equations are integrable [13]
and their solutions consist of solitons and radiation. The
one soliton solution is given by

)
(2

14 £ exp { (P_. + L_L
2
cosh{fz2 (t—p:c - —;,‘1)}
where p, p, ¢, and ¢ are free parameters of this solution.
p defines the amplitude and width (1/p) of the soliton, p
is the soliton’s velocity, 2q/p is its “center of mass,” and
@ is its “initial” phase.

Y (tz) =

III. HAMILTONIAN FORMALISM

Equations (1) can be derived from the Hamiltonian

s |* | |92
w7 (1% %
—[%1)* = [92|* — a2Re (1511/’2)) dt, (3)

GIL COHEN 52

with
OY; §H

9x _im’ (4)

where ; is the complex conjugate of ;.

After trans-

2_ 2\
forming from g to ¢ — 2% and from ¢ to ¢ — ﬁf_{i)_’

the parameters of the single-soliton solution [Eq. (2)] can
be viewed [24] as a Hamiltonian system with p and ¢, p
and ¢ canonically conjugate. The (reduced) one-soliton
Hamiltonian is given by

1 1,

H= (pp 3P ) (5)
In view of this Hamiltonian formalism, we apply the fol-
lowing ansatz. We shall treat the perturbed system as
a Hamiltonian system of “coupled” single solitons. The
phase space of this Hamiltonian system is the solitons’s
parameter space, which is eight-dimensional. Assuming
this, we may only investigate the evolution of the param-
eters of a single-soliton under the influence of another
single-soliton in the adjoining fiber. We are thus neglect-
ing radiation effects and the possible formation of other
solitons. The physical motivation and justification for
these assumptions is that we want to investigate the be-
havior and interaction of soliton pulses in optical fibers.
Therefore, our initial condition, for each of the two fibers,
will always be of the type of a single-soliton solution of
the unperturbed NLSE. Also, it is known that solitons
are robust objects. Therefore, since we are assuming that
the coupling is small, it is meaningful to assume that the
main effect will be that of the solitons persisting, but
changing their shape and velocity by means of the evo-
lution of their parameters. Note that the dimensionless
form in which Egs. (1) are written implies that, for so-
lutions of the form of Eq. (2), the contribution of the
nonlinear term will be substantial provided that p 2 1.
Since we are assuming that o < 1, we obtain that, within

the framework of our ansatz, p > a.
The reduced Hamiltonian of the perturbed system Egs.

(1) is
H = Ho + Hi, (6)
where

1 1
H, = Z y (Pipf - 51%3) (7a)

1=1,2

and

H¢t=—uReP“”emﬂuwz—¢n]

oo : t
[l
oo cosh (— — q1) cosh (p zt _ Q2)

The Hamiltonian (6) describes a dynamical system,
where z plays the role of “time.” The subscripts 1 and 2
relate to the parameters of the first and second fiber, re-
spectively. The unperturbed part, Eq. (7a), describes the
evolution of the parameters of the single-soliton solution
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in the fibers, not taking into account the influence of the
pulse in the adjoining fiber. The interaction term, Eq.
(7b), represents the effect that the presence of a pulse in
the adjoining fiber has on the evolution of the parame-
ters of the solitons. It is in fact an “overlap integral” (in
time) of the pulses in the two fibers, for fixed distance
of propagation z. For this integral to have a meaning-
ful contribution to the Hamiltonian (6), the two solitons
must be peaked around times that differ by less than the
solitons’ widths 1/p;. Also, the difference between the
velocities of the solitons must not be too large (relative
to p;), so that the oscillatory term in the integral will not
average out the interaction.

The perturbed system still has two conserved integrals
(in contrast to the infinite number of conserved integrals
of the unperturbed, integrable, system). The first one is

[ (il + ) at, ®)

which corresponds to the conservation of the total “mass”
(or intensity) of the coupled system. The second one is

o oY Y
/_oo (¢1% + 1/)2%) dt, (9)

which corresponds, up to a constant, to the conservation
of the total “momentum” of the system. The conserved
integrals manifest themselves in the Hamiltonian formal-
ism in the following conservation laws:

p1 + p2 = const, (10)
p1P1 + p2p2 = const, (11)

which relate to the first [Eq. (8)] and second [Eq. (9)]
integrals, respectively.

It is then natural to transform to coordinates in which
these conserved quantities are some of the new coordi-
nates. We first transform canonically by the generating
function

Sl (@1, ¥2,491,92, ﬁly ﬁZ’ﬁlvﬁZ)

= (1 — 2) P1 + p2P2 + (g1 + q2) P2 + @151 (12)

to the coordinates

1 = p1, P2 = p1+ p2,

P11 =11~ 2, P2 = P2,

P1 = p1 — pa, P2 = p2, (13)
41 = q1, 42 = q1 + q2,

in which the conserved quantity (10) is one of the mo-

menta.

Next, we transform canonically by the generating func-

tion

52 (ﬁla 527ﬁ17ﬁ27¢17 QZ, le Q2)

= — (p1P1 + p2P2) Q1 — P2Q2 — p1P1 — 222 (14)

to the coordinates
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R, = p1, Ry = p2,
‘I’1=¢1—%, ‘I)2=¢2—@7
P1 P1
Py, = p1p1 + p2p2, P, = po, (15)
leg];a Q2=62—£‘21—q_1’
P1 P1

in which the conserved quantity (11) is one of the mo-
menta. Note that the second transformation, Eq. (14),
is singular for R; = 0. It can be shown that the “orig-
inal” Hamiltonian, Eq. (6), does not have a fixed point
at Ry = 0. Therefore, in transforming to the new co-
ordinates (15), we do not lose any essential information
regarding the phase space structure of the system.
In the new coordinates the Hamiltonian is

H = Hy + Hjy, (16)

with

1| (P, — R.P,)?
H0:Z|:£1—‘Rz_z—)——+R2P22+2P2 (Pl_“R2P2)
1

1
-§R§ — R?R, + R§R1] , (17a)
and
Hiy = —aRe [31 (Ry — R2) exp (—i®;)
o)
dt|.
x /;oo cosh (R;t) cosh [(R2 — R1)t — Q2]

(17b)

We see that two of the momenta (R and P;) are indeed
constants of motion. The equations of motion related to
the Hamiltonian (17a) are too cumbersome. Therefore,
we have written down the relevant (and nontrivial) equa-
tions of motion in the Appendix [see Egs. (A1)- (A4)].

IV. FIXED POINTS ANALYSIS

We now look for the fixed points of the Hamiltonian
system (17). We will be interested only in those fixed
points, that correspond to the presence of a soliton in
each of the two fibers. In doing so, we are ignoring the
case when the soliton amplitude in one of the fibers is
zero (this corresponds to either p = 0 or p; = 0 or,
in the new coordinates, to either R; = 0 or R; = Rj).
It would make no sense to employ our perturbation the-
ory to these cases, since the evolution of optical pulses
in the “unexcited” fiber would be better described (at
least initially) by the linearized version of, say, Eq. (1b).
Therefore, its solutions will not be in the form of solitons
of the type of Eq. (2). Since we want to investigate soli-
ton pulses when interacting in the NLDC, we shall also
ignore those fixed points for which the soliton amplitude
diminishes to zero as a tends to zero. As a matter of
fact, we will be interested not in fixed points in the com-
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plete parameter phase plane but those in a subspace of
the phase plane. We shall call these steady-state points:
points at which the evolution in the parameter space is
such that the motion of the solitons will correspond to
some steady (bound) state of the two-soliton (two-fiber-
soliton) system.

Apart from the above-mentioned type of points, the
steady-state points [see the Appendix, Egs. (A5), (A7),
(A9), and (A13)] are

R, = p,
R, = 2p,
& =nr (n=0,1), (18)
Q1=0,
P, — P;R; -0
R, ’

Transforming back [using Egs. (13) and (15)] to our “lab-
oratory” coordinates, Egs. (18) read as

P1L=p2=p,

p1—p2=nw (n=0,1),

p1L=p2 =p, (19)
q1—q2=0.

These steady-state points correspond to two identical,
that is, having the same amplitude p and the same ve-
locity p, solitons. They also have the same center of
mass, i.e., they are peaked around the same coordinate
as they evolve in the NLDC. The only difference between
the n=0 and n=1 points is the relative phase of the soli-
tons (0 and =, respectively). Notice that some (those for
which p = 0) of these soliton states have been used [7,18]
as starting points for perturbation theory analysis.

V. LINEAR STABILITY ANALYSIS

Having obtained the steady-state points of the system,
we now turn to investigate their linear stability. We look
at parameter values that are close to the steady-state
ones, that is,

Ry (z) =p+ri(z),
Ry (z) =2p+ 72 (z),
®, (z) = nw + B, (2),
Py (z) = 2pp + 61 (z),
Py (z) =p+62(x),
Q2(z) = p(z).

Note that in the Hamiltonian formalism we are able to
look at the variation of all the parameters of the soli-
tons, while preserving the (Hamiltonian) structure of the
full [Egs. (1)] system. This is not the case when using
[7,18,19] other types of perturbation analysis, which limit
the variations allowed in the values of the parameters.
Also, the functional form of the variation of the parame-
ters is obtained from our theory, self-consistently, and is
not put in “by hand,” as in the Lagrangian formulation
[7,19].

(20)
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Inserting these into Egs. (A1)—(A4) and linearizing, we
obtain the following set of linearized equations:

ri =ap(1)"* B, (21a)

rh =0, (21b)

g = [p+ a_(;%)_": (’;_; + %)] (@2r —13), (21¢)
8 =0, (21d)

8y = ﬂlgilji”, (21e)

§ = [1 - a—(—_-’%)ii%z] (61 — 2065 — pra),  (21f)

where we have obtained Egs. (21b) and (21d) by using
the fact that Ry and P; are conserved quantities of the
system (17) [see Egs. (10) and (11)]. The prime denotes
the “time” derivative (that is, 8/0x). A similar analy-
sis was carried out in [20], but the deviations (from the
steady-state values) of the amplitudes and their phases
[that is, Egs. (21a) and (21c)] were ignored there.

We differentiate Egs. (21a) and (21e) once again. Us-
ing Egs. (21b)—(21f), we obtain two second-order equa-
tions

(2ry —rg)" = —wi (2r1 —7r2) (22)
and
7" 2 w%
52 = —w252 + 2—p (61 —p”'2) 5 (23)
where
n a(-1)"* /22 2
w? = (-1) 1 2ap? [1 + (—pz)—— (~1—§ + 5)] (24)
and
n2 a (-1t /x2?
Wi = (-1)" Zap? {1 _ (_pz)“ (?ﬂ . (25)

From Egs. (24) and (25) we see that, for n=1, w; is always
positive while w, is negative provided a < p?, which
holds in our case since we are assuming that p > a and

2 1. For the n=0 steady-state points the situation is
the opposite: wy is always positive, while w; is negative
for a <« p?. Thus we conclude that the system (17),
in general, has no stable steady-state points. For each
of the two types of steady-state points there exist stable
and unstable manifolds (types of perturbations). For the
n=0 points, perturbations of the type r1 (z) # 0 are un-
stable, while those of the type 3 (z) # 0 [or p(z) # 0]
are stable. For the n=1 type of points the situation is
the opposite. As mentioned above, a result similar to Eq.
(23) was obtained in [20]. However, since Eq. (22) was
not obtained there, this led to the wrong prediction that
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the system (1) does possess stable bound states. In [21]
the linear stability analysis yielded (qualitatively) differ-
ent results. In [19] the result (23) was obtained; however,
the use of the Lagrangian formalism did not make it pos-
sible to find the oscillations (or the divergence) in the
values of the amplitudes of the solitons.

VI. NUMERICAL SIMULATIONS

In order to check the validity of the theoretical anal-
ysis presented in Secs. III-V, we performed numerical
simulations with Eqgs. (1). The simulations were done
using a modified version of the well-known split-step
Fourier transform method [25], with periodic boundary
conditions. ‘The initial conditions were in the form of
the single-soliton solutions [Eq. (2)] of the unperturbed
system, with parameter values close to the steady-state
point ones. That is, we chose

.5 exp (ipt)

’l,bl 0,t) = —2
©0,%) cosh(%t) ’
(p—6p) -
. exp [i (pt + n)]
Y2 (0,8) = —i—2 T (26)
cosh (% + 6q)
25.0 T T
200 —
8 150 -
9 .
B
A 100 |- -
50
0.0 L 1
-4.0 —-2.0 20 4.0
25.0 T T
20.0 —
8 150
g ! .
i
a 10.0 - -
50 -
0.0 : .
-4.0 2.0 0.0 20 4.0
Time
(b)
FIG. 1. Contour plot of the normalized intensities (a)

|41 (z,t)]* and (b) |2 (z,t)|> as a function of dimensionless
time t and scaled propagation distance z. The initial pulse
profiles are in the form of Eq. (26) with p = 4, p = 0, and
n=1. dp =0.8, ¢ =0, and a = 0.075. As can be seen, this
is indeed a stable perturbed state of the two-soliton system.
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with n=0 or 1. ép and &q are the deviations from the
steady-state point values.

In Fig. 1 we show contour plots of the intensities
|11 (.1:,1t)|2 and |2 (ac,t)|2 for a stable perturbation of
the type dp # 0, ¢ = 0, and n=1. The steady oscil-
lations in the amplitudes (maximum values) of each of
the solitons are clearly seen. Figure 2 shows the contour
plots for the second type of stable perturbations, those
of the type dp = 0, 8¢ # 0, and n=0. Here the centers
of masses of the solitons oscillate, while their maxima
remain constant. In Fig. 3 a perturbation of the type
8p = 0, 8q # 0, and n=1 was chosen and the instability
is clearly seen. Note that after the instability separates
the solitons a distance farther than their typical widths,
they do not interact anymore and their motion is that of
the unperturbed [see Eq. (2)] solitons, with the values of
p; and p; reached by the “time” the interaction ceased.

We checked numerically the predictions of Egs. (24)
and (25) for the frequency of oscillations in the values
of the parameters of the solitons under the two types of
stable perturbations. Figure 4 shows the comparison be-
tween the theoretical prediction, obtained from Eq. (24),
and the values computed numerically, of the dependence
of the frequency w; on the coupling parameter « for the
case of perturbations of the type dp # 0, §¢ = 0, and
n=1. A typical value of p = 4 was chosen. It is seen
that the correspondence between the numerical results

10.0 T T

80 n

40 7

Distance

20 7

0.0 i :
-40 -20 00 20 40

Time
(a)

10.0 T T

80 h

6.0 -

Distance

40 - -

0.0 I 1
—4.0 —-2.0 0.0 20 4.0

Time
(b)

FIG. 2. Contour plot of the intensities (a) |1 (z,t)|> and
(b) |2 (x,t)]?. The initial pulse profiles are in the form of
Eq. (26) with p=5,p=0,and n=1. §p =0, 6g = 0.8, and
a = 0.2. This, again, is a stable perturbed state.



5570

50

4.0

3.0

Distance

20
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Time
(a)

50 —— .
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20
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(b)

FIG. 3. Contour plot of the intensities (a) |1 (,t)|*> and
(b) |tz (z,t)|>. The initial pulse profiles are in the form of
Eq. (26) with p =5, p=0,and n = 1. ép = 0, §g = 0.8,
and a = 0.2. After the exponential divergence separates the
solitons more than their widths (1/p) apart, they do not in-
teract any more and the motion of their center of masses is
uniform, like that of the unperturbed [Eq. (2)] solitons.

3 —r———————
[ ]
25 | E
2 | i
0‘)1]5:‘ b _:
8 . ]
1 E ]
Eo e 1
05 | :
0 N B S B S

0 0.05 0.1 0.15 0.2

(04

FIG. 4. Frequency of oscillations in the amplitudes of the
solitons as a function of a. The initial conditions are in the
form of stable perturbations of the type dp # 0, ¢ = 0, and
n=1, for a representative value of p = 4. The line corresponds
to the theoretical prediction [see Eq. (24)] and the dots are
the values obtained from the numerical simulations.
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o bty v b b by a

0 0.05 0.1 0.15 0.2

FIG. 5. Frequency of oscillations in the coordinates of the
center of mass (c.m.) of the solitons as a function of a, in the
case of stable perturbations of the type dp = 0, ¢ # 0, and
n=0, for a typical value of p = 3. The line corresponds to
the theoretical prediction [see Eq. (25)] and the dots are the
values obtained from the numerical simulations.

and the theoretical prediction is very good. In Fig. 5 the
numerical and theoretical [obtained from Eq. (25)] re-
sults are compared for the dependence of the frequency
wy on a for the case of perturbations of the type §p = 0,
6q # 0, and n=0. A typical value of p = 3 was cho-
sen. Here, again, the numerical results agree well with
the theoretical predictions.

The behavior of the two-soliton system under unstable
perturbations was also studied numerically. In Fig. 6 the
difference between the amplitudes of the two solitons is
plotted as a function of the distance of propagation for
an unstable perturbation of the type dp # 0, ¢ = 0, and
n=0. We chose p = 4 and a = 0.075. The line represents
the solution of the linearized equations Eq. (22) with the

2 T
Q L B
Q L 4
b= 1
L 15 b .
() - 4
Q“: L 4
= r 1
S i 1
[} Lr ]
'-O ) T 1
=1 r . 1
=
= r 1
o, 05 -~ —
g e
<

0 I I L ]

0 0.5 1 1.5 2

Distance

FIG. 6. Difference between the amplitudes of the two soli-
tons as a function of distance = for unstable perturbations of
the type dp # 0, ¢ = 0 and n=0. p = 4 and a = 0.075.
The line corresponds to dp cosh (w1t), which is the theoretical
prediction. w; was obtained from the simulations in the n=1
case, when these type of perturbations are stable. The dots
are the values obtained from the numerical simulations.
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1.2 e T

0.8
0.6

0.4

c. m. difference

L L B B L

0.2

0 0.5 1 1.5 2 2.5 3
Distance

FIG. 7. Difference between the c.m. of the two solitons
as a function of distance z for unstable perturbations of the
type ép = 0, 8g # 0, and n=1. p = 4 and o = 0.1. The line
corresponds to &g cosh (w2zt), which is the theoretical predic-
tion. w2 was obtained from the simulations in the n=0 case,
when these type of perturbations are stable. The dots are the
values obtained from the numerical simulations.

value of w; taken from the corresponding numerical sim-
ulations when this type of perturbation is stable (i.e.,
n=1). The dots represent the values obtained numeri-
cally. It can be seen from the figure that the exponen-
tial deviation saturates rather quickly. (The exponent
has the value of 0.9 when the discrepancy between the
theoretical and numerical results reaches 10%.) On the
other hand, in the case of unstable perturbations of the
type dp = 0, dq # 0, and n=1, shown in Fig. 7, there is
quite good agreement (the discrepancy between the the-
oretical and numerical results is less than 10% when the
exponent reaches a value of 2.7) between the theoretical
predictions, obtained from Eq. (23), and the numerical
results. In this case the exponential deviation also ceases
(as seen in Fig. 3) when the two solitons are far enough
apart.

VII. SUMMARY

We have studied analytically and numerically the in-
teraction of soliton pulses in the nonlinear directional
fiber coupler (NLDC). Our aim was to look for bound

J
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soliton states and investigate their stability. Exploiting
the Hamiltonian structure of the evolution equations, we
developed a canonical perturbation theory for the evolu-
tion of the parameters of two solitons, interacting in the
NLDC. Within the framework of the perturbation the-
ory, all the conserved integrals of the exact problem were
preserved

Exactly two families of bound two-soliton states were
found and their stability analysis showed that, in general,
neither of these states is stable. For each of the states
there exist stable and unstable types of perturbations.
The linear stability analysis was performed without any
restrictions on the evolution of the parameters of the soli-
tons, leading to complete results as to the stability of
these bound states.

The numerical simulations that we performed con-
firmed the existence of two types of stable perturbations.
The numerical results agreed quantitatively with the the-
oretical predictions for the frequency of small oscillations.
The two types of unstable perturbations were also ob-
served numerically. There is good agreement between
the values of the instability growth rates obtained the-
oretically and numerically. In the case of the unstable
perturbations of the type g # 0 (n=1) the linear approx-
imation obviously breaks down when the two solitons are
sufficiently far apart (because they do not interact any
more), as was indeed observed numerically. For unstable
perturbations of the type dp # 0 (n=0) it is not clear
when the linear approximation does not hold anymore.
Numerically, we observed a saturation of the exponential
divergence after a relatively short (the exponent reached
a value of 0.9) distance. This subject is currently under
further investigation.
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APPENDIX

In this appendix we shall show the detailed derivation
of the evaluation of the steady-state points of the Hamil-
tonian (17). The relevant (and nontrivial) equations of
motion corresponding to the Hamiltonian (17) are

o ()

o OHn, _ _ ) /oo Ry
R, = 5%, olm | Ry (Ry — Ry) exp(—i®,) | cosh (Fat) cosh [(Rs — R1) t — O3] dt| , (A1)
. OH, e | B (B R o oo exp [z (5%1321) t] sinh [(R2 — Ry)t — Qz]d A2
= — mt — —1 t ’
2= a0, —OoRe |Fi(Bu—Ra)exp(—i®a) | = g ok (e — Ra) ¢ — Q] (42)
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,  8H _ (PL— RyPy)? RZ
®1= %R, ~ 2R? falta =
exp |:’L (—-P1 _RR’P2 ) t:I
oo ! 1 1
+aRe{ R (R; — R —1P - 5
@ e( 1(Ry = Rg) exp(~ 1){/—00 cosh(R;t) cosh[(Rz — R1)t — Q2] (Rz - R, Rl)dt
exp |:z (5_—;‘2&) t:| t
*© ' [ Pr— RyP,
[_w cosh(R;t) cosh[(R; — R1)t — Q2] l}( R2 ) + tanh(Rat)
—tanh[(Ry — Ry)t — QZ]} dt}) : (A3)
. (PI—R,P,
,  8H ( R2> N exp [i (B ) o] ¢
=22 (P -ReP) (1-2) _aIm |Re (R - R _i®
@ oP, (P 2F2) R, olm | Bz (Fa 2) exp (~i%1) /—oo cosh (Ryt) cosh [(R2 — Ry)t — Qz]dt .
(A4)

It can be shown that no steady-state points exist for
which p; # p2. In the new coordinates [see Eqgs. (13) and
(15)], this translates to

Ry =p1=p, Rz =p1+p2=2p. (A5)

For these values of R; and R, the integral in Eq. (17b)
can be evaluated by integration in the complex plain. For
Q2 # 0 and (P; — Ry P,) # 0, we obtain

exp {i [(B32R2)Q; - @, }

sinh [71' (%)] sinh (Q2)

Hiyt = —aprlm

It can be seen that, in Eq. (A6), R} = 0H;y /0%, and
P} = 8H;,:/0Q2 cannot be set equal to zero simultane-
ously. Thus there are no steady-state points at which
Q2 # 0 and (P; — R2P2) # 0, so that either Q; or
(P1 — R2P>) must be 0. Setting

QZ = 07 (A7)
we integrate Eq. (17b) and obtain
(P52 exp (i
2p2 p (—i®1)
Hi,s = —apnRe L (A8)

sinh [ﬂ' (7131;52”1)2)]

Equating, from (A8), R} = 0Hi,;/8%; to 0, we obtain
the condition

® =nmw, n=0,1. (A9)
Using the condition (A9), we obtain from Eq. (A2)

_ 6Elinl:

P2 = 54,

= 0,
Q2=0

(A10)

[

so that both momenta R; and P, are constant at these
points [Egs. (A5), (A7), and (A9)]. In order that these
points correspond to steady-state points we also require
that Eqs. (A7) and (A9) hold. That is, ] and Q% must
be equal to 0. Inserting all the relations into Egs. (A3)
and (A4), we obtain

, _OH

Qz—gj,;

—(Pl - 2pP2) — 2alm [(—1)"

o exp {z (F‘—;";p—})”) t] tdtjl

All
% —oo cosh?(t) (A11)
and
o OH _ (P —2pP;)?
1 6R1 2p2
" olm [(_1)n (ﬂ)
P
- Py —2pP,
co exp |t | =2 )¢t|t
x/ [(;’ )]dt. (A12)
—oo cosh” (t)

It can be seen that Egs. (A1l) and (A12) can be set to
equal 0 if and only if (P; —2pP;) = 0. Remembering
that 2p is Ry at the sought for steady-state points gives
us the final constraint for the existence of steady-state
points:

(P, — RyPy) = 0. (A13)

Note that if instead of first setting Q2 to equal 0 we first
set (P; — R2P,) to equal 0, we still get the same relations
for the steady-state points.
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